
Journal o f  Statistical Physics, Vol. 20, No. 6, 1979 

Distributive Processes and Combinatorial Dynamics 

R. D. Cooper 1 and M. R. Hoare 1 

Received October 12, 1977; revised November 29, 1978 

We describe a new family of Markov processes, a prototype for which is in 
the statistics of a test molecule undergoing " r a n d o m "  energy transfer in 
collisional complexes with heat-bath particles. Master equations for several 
versions of this process are constructed and solved exactly under purely 
statistical prescriptions of the mechanism and degrees of freedom available. 
Their eigenfunctions, arising through a natural  factorization of the transi- 
tion kernels, prove to be classical polynomials of Laguerre and Jacobi 
type; the relaxation times are given by simple terminating series in the 
degree-of-freedom parameters. Moreover, the spectral representations of 
such kernels prove to be Erdelyi-type bilinear expansion in the respective 
eigenfunctions, giving these little-known formulas a previously unsuspected 
physical interpretation. A remarkable property of the solutions is that  they 
are both  exact and parametrized over the whole range of behavior from 
effective "Brownian  m o t i on"  at one extreme to virtually purely r andom 
processes at the other. Autocorrelat ion functions for equilibrium fluctuations 
in the same ensembles are also obtained and shown to be strictly ex- 
ponential. Applications of such "distributive processes" are discussed with 
reference to both  the physics of energy transfer and possible alternative 
realizations, e.g., in operations research. Some related mathematical  topics, 
notably the role of fractional integral-operators in the master equation, are 
pointed out. 

KEY WORDS: Stochastic models; Markov processes; master equation; 
energy transfer; exact solutions; internal degrees of freedom; Erdelyi 
expansions; fractional operators. 

1. INTRODUCTION 

Consider the following statistical thought-experiment. A polyatomic molecule 
(A) is immersed in a heat bath of dissimilar molecules (B) with which it can 
exchange energy only through binary collisions. Let the system molecule (A) 
and heat-bath molecules (B) possess p and q internal degrees of freedom, 
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respectively, and make the statistical hypothesis that, upon each binary 
collision, the internal energy of the two partners is, in an appropriate sense, 
randomly distributed between them. Assuming the notions here introduced to 
be mathematically definable, if somewhat questionable physically, we may 
pose a number of problems of increasing difficulty. 

(i) What is the probability that the molecule (A), given an internal energy 
x, will make a transition to an element of energy dy about y upon random 
collision ? How will this depend on the heat-bath temperature and the degree- 
of-freedom parameters ? 

(ii) Does the energy distribution of an ensemble of such test molecules 
approach a Boltzmann equilibrium distribution, and if so, how? 

(iii) Given that a stable equilibrium distribution is attained, what are the 
characteristics of the equilibrium fluctuations of such an ensemble, in particular, 
its energy autocorrelation function and power spectrum ? 

(iv) How does the same system behave in the presence of an absorbing 
barrier causing the molecules to be removed at some critical upper (or lower) 
threshold of energy x t ? 

Even informally, we may see that this type of model is rich in statistical 
interest (see Fig. 1). At the one extreme, that for q >> p, we may expect the 
system and heat bath to be so strongly coupled that correlation of states 
before and after collision is virtually absent; at the other, forq << p, the system 
undergoes relatively minute changes at each collision and the evolution 
might be expected to approximate to some form of Brownian motion. The 
intermediate situation will clearly correspond to a first-order Markov process 
on continuous states with autocorrelation markedly dependent on the 
parameters p and q. 

Although we have deliberately taken it out of its original context, the 
problem described here may be recognized as one of a number which have 
been current in the theory of  chemical reactions and intermolecular energy 
transfer, stimulated largely by the ideas of Kassel. (1' 2> While interest in this 
type of theory has declined somewhat, the original statistical models retain 
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Fig. 1. The distributive process for a p system in a q heat bath. In each collision complex 
internal energy is conserved and randomly distributed between the p and q available 
degrees of freedom. 
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importance, if only because of the near impossibility of writing any sort of 
dynamical theory of energy transfer between polyatomic molecules that con- 
sistently embodies a strong coupling between all degrees of freedom presentJ a) 
In fact the probability scheme originating in answer to question (i) above 
seems to us to be the only one yet devised which both allows for multiple 
degrees of freedom and yet is consistent with general conditions of stochasti- 
city, equilibrium stability, and detailed balance. Moreover, it is clear to us 
that the domain of interest of stochastic processes of "distributive" type 
extends considerably beyond the physical context we assume here. It is not 
difficult to envisage applications in fields of applied probability as diverse as 
storage theory, economic models, and perhaps genetics. 

On the mathematical side an unexpected gain has been the discovery of 
a connection between our solutions for "distributive models" and a variety 
of lesser known expansion formulas and operator relationships in the theory 
of special functions. Thus we have obtained for the first time a physical 
realization of the "Erdelyi-type" bilinear expansions for classical orthogonal 
polynomials (4,5~ as well as, through consideration of the underlying statistical 
models, extending the list of such expressions by several previously unpub- 
lished formulas. (6'7~ These and other mathematical aspects are being treated 
elsewhere, (6'8~ but their relationship to the physics of the problem will be 
indicated briefly as it arises. 

1.1. Organization of the W o r k  

This paper is divided as follows: After a general introduction and the 
setting of notations (Sections 1 and 2) we derive the system of transition 
probabilities for the problem posed in the opening paragraph (Section 3). 
A number of properties directly deducible from the transition kernel are then 
obtained, including the autocorrelation function for equilibrium fluctuations 
in a "distributive ensemble" (Sections 4 and 5). In Section 6 we solve the 
eigenvalue problem for the kernel exactly and thence obtain its full relaxation 
solution and spectral representation. Using this process as a prototype, 
several extensions to the idea of "distributive processes" over continuous 
random variables are explored, some of which suggest important applications 
to energy transfer in molecular systems. (Sections 7-9). A companion paper, 
to be published elsewhere, extends the present results to the domain of 
discrete-variable processes. (9) 

1.2. Continuous Combinatorics and Occupancy Problems 

As a starting point we may take the need to formalize the notion intro- 
duced above that in some way a continuous quantity, such as energy, may 
be considered to be "randomly distributed" among all possible degrees of 
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freedom of an entity, such as the collision complex of two colliding molecules. 
The basic formulas we require are quite well known, though often presented 
in somewhat restricted language. The point of view we take is entirely a 
stochastic one--that  is, we define the state of our physical system in terms 
of certain random variables whose behavior derives from general statistical 
assumptions without further reference to any underlying deterministic or 
quantum mechanics. 

In this spirit we begin by examining the level of description in which the 
state of some small physical system (e.g., a molecule) is specified by the 
partitioning of some conserved quantity (e.g., its total vibrational energy) 
into subvariables which are additively, though not individually, conserved. 
Following common usage, the number of such variables will be termed the 
degrees of freedom of the system and a particular partition {~1, E2,..., Es} a 
complexion or rnicrostate corresponding to the macrostate E, where 

f = S  

0 ~ ~ E; ~ ~ =  E 
i = 1  

If  we specify an s-dimensional state space of the variables E~ and associate 
each complexion with a point in it, then the total volume of state space 
accessible to systems in dE about E can be specified by a structure function 
G~(E) defined as 

G~(E) dE = I "" ~ d,z ... d,~ (1) 

{E~EI +~2+'"~s~E+dE} 

(cf. Kinchine(16)). If  no further constraints than those in {...} are applied and, 
in particular, if the variables {~} are uncorrelated, then the integral is element- 
ary and gives the well-known result 

G~(E) = E ~- ~/(s - i)! (2) 

The above, purely geometrical, properties take on additional interest 
when we consider the structure function for subsets of degrees of freedom 
among the total s. We can then define what is in effect a continuous occupancy 
problem in which the quantity of importance is the probability density 
W~,q(X, E) defined as 

p r f p  subsystems of a total p + q have a share~ 
Wp,q(x, E) dx = / i n  dx about x when p + q contain E 

If  the complexions remain unbiased the result is evidently 

W,,q(x, E) = Gp(x)aq(E- x) 
Gp+~(E) ' 0 ~ x ~ E 

F(p + q) x~'-~(E - x) q-~ 
- F(p)F(q) E ~+"-1 (3) 
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Thus W~,q(x, E) is the Beta distribution normalized on the interval (0, E):  

fo ~W,,q(x, E) = (4) dx 1 

Putt ingp = 1, we obtain the probability density for a single degree of freedom 

Wl,q(x, E) = q(E - x)q-Z/E q, 0 ~ x e E (5) 

while for the special case p = q = 1 we see that the whole reduces to a 
uniform distribution: WLx(x, E) = E - ~. 

1.3. The Thermodynamic Limit 

In order to link up with the problem posed in the introduction, it is 
interesting at this stage to consider the limiting process E--> 0% s ~ o% 
E/s = fi, a constant. This clearly corresponds to the required case of  a system 
in thermal equilibrium with a "hea t  ba th"  of  infinite degrees of freedom, 
characterized by a temperature fl-~. We observe that 

x~-~Limq(q  + I ) ' " ( q  + P - 1 )  ( E)  q-z Lim Wp.q(x, E) = ~(p) ~...~ Ev 1 - 
E-'* Qo , q ~  ~'1. 

q = ,6 E J 

from which, under the given constraint, 

W~,~ (x, fi) = [tiT/r(p)]x" - le - ~x (6) 

Thus the Beta distribution converts to a G a m m a  distribution (Boltzmann 
distribution in physical contexts). 

2. PURE R A N D O M  S A M P L I N G  D Y N A M I C S  

At the level of  simple combinatorics we can do little more than expose 
the properties of  the distributions just given in terms of hypothetical "sampling 
trials" in which a state variable x is measured over an ensemble, or, equiva- 
lently, over an infinite sequence of independent "randomizat ions."  Such 
thought-experiments formed the basis of  early theories of  unimolecular re- 
actions, (2) the randomization of energy among vibrational degrees of  freedom 
being imagined as brought about  by some ill-defined form of intramolecular 
"collisions." The conclusions that can be drawn from such experiments are 
somewhat limited, once we have derived the distributions themselves and 
their moments. (See Table I.) 

A slightly less obvious problem, however, is that of  deriving the prob- 
ability that, on a random trial, the state variable for a single degree of freedom 
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will be found to exceed some threshold value, say Eo. By integration of (5) 
we arrive at Kassel's formula for this, viz. 

(one degree of freedom of a total s has'/ 
ws(E, Eo) = Vrlx > Xo when s altogether contain E 

= WI,~-l(x, E) dx = 
o 

(7) 

If we then regard the event in brackets as "success" in a sequence of 
Bernoulli trials, it is easily shown that the mean number of trials to success 
is simply <n) = [Eo/(E - Eo)] ~- 1 under the conditions stated. If  the trials 
are with random incidence in time, similar to collisions in a dilute gas (i.e., 
a Poisson process), the mean waiting time to success <t> is given by the same 
expression, provided that time is scaled in units of the mean collision time. 

More complicated formulas can be derived if we consider the probability 
that a group of subsystems together reach a given energy threshold, but, so 
long as successive outcomes remain statistically independent, the processes 
are of limited interest. 

3. M A R K O V I A N  M O D E L S  A N D  T R A N S I T I O N  PROBABILIT IES 

3.1. Distr ibut ive Transi t ion Probabil i t ies 

It is clear that the relaxation problem described in the introduction 
involves more than the simple occupancy statistics just considered. When the 
test molecule (the p molecule) collides with one of the heat-bath molecules 
(the q molecules) it is not instantly equilibrated to the heat-bath temperature, 
but instead simply shares its energy in an unbiased manner with the q 
degrees of freedom available. A degree of correlation will thus be present 
between states before and after collision, this evidently increasing with the 
ratio p/q. The distribution in the exchange being, nevertheless, independent 
of the previous collision, the process can clearly be described by a first-order 
Markov process on a continuous state space (0, oo). What then are the transi- 
tion probabilities governing this ? 

Consider a collision between a particular p molecule, with specified 
energy x, and a random q molecule having the Gamma energy distribution 
of the heat bath. We define the transition kernel K(y, x) in the usual way as the 
probability density for the outcome of this collision to be a state with energy 
in dy about y. For  the present we shall imagine a sequence of discrete trials 
at intervals indexed by n. 

The explicit form of K(y, x) is easily written if we notice that the mechan- 
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ism of "distr ibut ive" energy exchange implies a convolution of the (Beta) 
distribution for the total energy available in a collision complex with the 
(Gamma)  distribution of the heat-bath q molecules entering it. Thus, on 
integrating over the joint probabilities of  formation and breakup of all 
complexes, we see that 

~0 ~176 Kp,q(y, x) = Wp,q(y, u)Wq,| - x , /3)H(u - x )H(u  - y) du (8) 

where Wv,q(y, u) and Wq.o~(x,/3) are the Beta and G a m m a  distributions, 
respectively, and H( . )  indicates the unit step function. Thus 

foo Kp,q(y, x) = F(p + q) fiqy~_~eBX (u - x)q-~(u - y)q-~e - ~  du 
F(P)F(q) 2 ~ax(x,~) u'+~-~ (9) 

The presence of the step functions, which could be taken as implicit in the 
two distributions, marks the fact that the collision complex cannot contain 
less energy than the initial state nor give up more than it contains on division. 
With the structure of  the diagram in Fig. 2 in mind, we shal ladopt  a notation 
for the process giving rise to the kernel (9). It  will be referred to as the 
(Plq, oo) process, the bar indicating the degrees of  freedom which interact 
distributively and the oo referring to the infinite degrees of  freedom of the heat 
bath. This system can encompass other interesting cases, such as the (Plq, r) 
and (p, qlr, s) processes which we treat in Section 9. 

The kernel (9), originally derived by Hoare, (11) has both properties to be 
expected from its method of construction and a number of  surprising ones. 
In particular we may distinguish the following: 

3.1.1. Scaling. For  most purposes (see, however, Section 3.1.10) we 
may adopt  the scaling x - +  fix, measuring the state variable in units of  
fi-1 (kBT in the physical problem). We can thus suppress the parameter/3 
in the G a m m a  distribution, writing it as W~.=(x) in what follows. 

Fig. 2. The probabilistic structure of the (Plq, oo) distributive 
process. Here and in subsequent diagrams the wavy lines dis- 
tinguish the random steps. The heat-bath degrees of freedom are 
shown shaded. In the notation used above, the vertical bar in- 
dicates the division between system and surroundings, the comma 
indicates the distinction between systems otherwise interacting. 

P 

I 

q + 0 0  
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3.1.2. Positivity, Continuity, and Boundedness. ManifestlyO < 
K(y, x) < oo for all x, y ~ (0, oo) and p, q positive integers >1 1. The K(y, x) 
diverges at K(0, 0) for the special case p = q = 1 but is otherwise bounded 
in the whole x, y quadrant. The structure of the integral is such that the first 
q - 1 partial derivatives are continuous at the diagonal but that a discon- 
tinuity at x = y appears in the derivatives (OqK/Ox q) and (~qK/Oyq). This 
Green-function-like property will be seen later to play a crucial role. 

3.1.3. S t o c h a s t i c i t y .  As a convolution of two stochastic kernels, K 
is itself stochastic, i.e., 

fo ~ Kp,q(y, dy -- (10)  x)  1 

for all x ~ (0, oe). The result, which is evident from (8) and may be checked 
by partial integrations of (9), corresponds to the existence of a left eigen- 
function ~bo(x) = 1 with eigenvalue h o = 1. 

3.1.4. Detailed Balance. The symmetry property 

Wp. ~(x)X,.q(y, x) = Wv, ~o(y)Kv,q(x, y) (11) 

is likewise ensured by the method of construction and gives the condition of 
detailed balance at equilibrium. We may use this to define a new symmetric 
kernel G(x, y) by the transformation 

G(x,~) = [Wp.o~(x)/Wv,~(y)]~t2Kp,q(y, x) = G(y, x) (12) 

3.1.5. S t a t i o n a r i t y .  The previous two properties together imply that 
K(y, x) preserves the equilibrium Gamma distribution Wv,o~(x), i.e., 

f :  Kp.q(x, dy = (13) y) Wv, ~(y) W,,~(x) 

In other words Wp,| is necessarily a right eigenfunction of K, also with 
eigenvalue ho = 1. 

IAn) ( X :3.1.6. M o m e n t  P r o p e r t i e s .  The moments ~p,~, ) defined by 

fo k~(x) = ynK(y, x) dy (14) 

govern in a crucial manner the statistical properties of the kernel. Although 
they may be obtained by lengthy partial integrations of the expression (9), 
this is unnecessary, for we may operate directly upon the defining relation (8). 



Distributive Processes and Combinatorial Dynamics 605 

Thus, remembering that Wv,q(x, y) and Wp,~(x) stand for the Beta distri- 
bution and the dimensionless Gamma distribution, respectively, we have 

x)  

- P ( d u W ~ o o ( u -  x)u 
P + q  d 

- P ( d u  Wq,~(u)(u + x) 
p + q  J 

- P ~  Ix + q] (15) p + q  

In these integrations we have left the step functions implicit in the integrands 
and used the moments of the Beta and Gamma distributions from Table I. 
We see that, somewhat surprisingly, the first moment of K(y, x) defined by 
(9) is simply a first-order polynomial in x. 

3.1.7. Eigenfunction Properties. As is readily shown (see, e.g., 
Oppenheim et al. (12)) the properties (10) and ( t l )  imply that K(y, x) is 
positive-definite, having a unique eigenvalue Ao = 1 and an infinite spectrum 
of real eigenvalues 0 < A~ < 1. Moreover, these are associated with complete 
sets of right and left eigenfunctions Ck(x) and ~b~(x), respectively, satisfying the 
equations 

fo ~ K(x, dy = hkCk(X) (16) Y)~k(Y) 

and 

fo ~~ Ck(y)K(y, x) dy = ZkCk(y ) (17) 

Table I. Distributions in Continuous Combinatorial Dynamics 

Distri- State 
bution space Form Mean Variance Moments 

p E  
Beta x ~ (0, E)  B ( p , q ) - I  (P + q) 

x~- ~(E - x) ~- 1 
x EV+q-1 

Gamma x z (0, ~ )  F(p) -  ~fi~x p- ~e- ~ p/fl 

pqE 2 ( p ) . E  ~ 

(p + q)2(p + q + 1) (p + q ) ~  

p/~2 (p),/~, 
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We know from Sections 3.1.3 and 3.1.5 that the stationary eigenfunctions, 
corresponding to ~o = 1, can be chosen as 

and 

~b0(x ) = 1 (18) 

rko(X) = Wp,oo(x) = r (p ) - l x~ ' - l e - '~  (19) 

for the present kernel. Combining these with the detailed-balance symmetry, 
Section 3.1.4, it follows that the left and right eigenfunctions are related 
through 

~k(X) = ~o(X)~bk(x) (20) 

The determination of the ~bk(x) for the distributive kernel (9) will be our first 
objective. 

3.1.8. Special  Cases, A number of special cases lead to considerable 
simplification of the kernel. Thus, if q = 1 we find 

K~,I(y,  x)  = py~'-le': ( e - " / u  ~') du 
max(x,y) 

= p ( y / x )  ~'- le#Ep(max(x ,  y)) (21) 

where Ep(x) is a tabulated.function related to the exponential integral (Ref. 
13, Item 5.1.4). On further simplification to the case p = q = 1 

KI . I ( y ,  x) = e x el[max(x, y)] (22) 

This kernel, representing the "distributive" interaction of a single oscillator 
with a similar heat bath, was originally studied by Hoare. (~) It has the peculi- 
arity that there is divergence at K(0, 0) while at the same time all down 
transitions from a given energy are equally probable. 

3.1.9. L imi t ing  Fo rms .  More interesting in certain respects are the 
asymptotic forms of the kernel for the two cases q << p and q >> p. Consider 
the first. 

q >> p: The essence of this case can be seen on examining the general 
structure of  the kernel (9) and observing the behavior of the two factors in the 
convolution as q --+ oo. Under these conditions the main contribution to the 
integral comes from large values of u near the peak of the shifted Gamma 
distribution. Replacing u by its value at the maximum, we find that the first 
factor in the convolution becomes W,,,q(y, q - 1 + x). Letting now q -+ o% 
it is evident that this becomes independent of x as it tends to the scaled 
Gamma distribution. Thus 
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f0 ~176 
Lira Kp,q(y, x) -- Lira W~,,q(y, q + x - 1)Wq,| - x)  du 
q--~ oo 

= Wp,~(y)  (23) 

The physical content of  this is plain. The transition kernel being proportional 
to its own equilibrium distribution in the final state, an arbitrary ensemble 
distribution of test molecules will be equilibrated at a single distributive trial. 
Thus, for any P ( x )  normalized to unity we have trivially 

fo Lim .Kp,q(x, y ) P ( y )  dy = Wp, ~(x)  

The Markovian character of  the process has vanished and we are left with a 
pure random process with the G a m m a  distribution. 

Consider now the opposite extreme. 
q << p:  An ensemble of  test particles having many degrees of  freedom now 

interacts with a heat bath of  molecules having relatively few. To a crude 
approximation we may now replace the Beta distribution in Eq. (8) by a delta 
function at its very sharp maximum. Thus 

W,,~(y, x) ~ 8{u - [(p + q - 2)/(p - 1)]y, 

so that qualitatively 

Kv,q(y, x )  ~,'2% F(q) - 1/3qzq - l e -  e~H(z) 

where z = y - [(p + q - 2)/(p - 1)]x. The interesting energy range near 
equilibrium being now the vicinity of the Maxwellian mean (x} -- p p -  ~, we 
can see that, for large p, transitions become restricted to a very narrow peak 
about the diagonal y = x. Though this does not in itself lead to true Brownian 
motion, the evolution of  the system can be expected to have something of the 
character of  a diffusion process. 

3.1.10. Relaxat ion in a " C o l d "  Heat  Bath. Reverting again to the 
unscaled form of the kernel (8) and (9), we may note that, in the limit of  a 
perfectly " co ld"  heat bath (/3 --> oo) the transition probability takes the form: 

K,,o(y, x) = Ve~,~(y, x) 

= F(p  + q ) F ( p ) - ~ F ( q ) - l y ' - * ( x  - y )q-~x  -(p+q-~), y <. x 

= 0; y > x (24) 

[Note that this is equivalent to taking Wq,~ (u - x,/3)--+ 8(u - x) in the 
gamma distribution (6).] The relaxation process remains well defined except 
that now only down transitions are possible and the ensemble will approach 
the asymptotic distribution P(x ,  oo) = 8(x). This type of problem is interesting 
in its own right and will be discussed more fully elsewhere. (x~> 
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4. T I M E - D E P E N D E N T  PROPERTIES IN GENERAL 

The time-dependent properties of stationary Markovian models such as 
those invented here can be exposed in a number of ways. Common to all 
these, however, is an essential dependence upon the eigenvalue properties 
of the transition kernel K(y, x) as expressed in (16) and (17). The formal 
solutions to the problems posed in the introduction are well enough known 
that we need only quote them here. Several cases need to be distinguished, 
however. 

4.1. Evolution in Continuous Time: The Master  Equation 

If  0 ~< t < oo is a continuous time scale, with t reduced in terms of some 
characteristic '~ collision frequency," then, provided the latter is not a function 
of the state variable x, and that the kernel K is stationary in time, the evolu- 
tion of an ensemble distribution P(x, t) will be given by a nonsingular master 
equation 

-~ P(x, t) = K(x, y)P(y, t) dy - P(x, t) (25) 

The solution in eigenfunctions is well known (see, e.g., Ref. 12). We can 
write 

P(x, t) = Co(X) + q~o(X) 2 ak~bk(x) exp[--(1 -- hk)t] (26) 
k = l  

where ~bk(x) and Ck(x) are left and right eigenfunctions of K with eigenvalues 
Ak, and the a~ are constants to be determined from the initial probability 
distribution P(x, 0). Given the detailed balance condition (11), the eigen- 
functions must satisfy an orthogonality property 

fo ~~ r162 Ni (27) dx 3~j 

with N~ an appropriate normalization function; the coefficients ae are then 
determined through the relation 

Jo a~ = Ni-1 ~(x)P(x,  O) dx (28) 

Alternatively, the "fundamental"  initial condition P(x, Xo, t) = 3(x - Xo) 
may be applied to give the coefficients ak(xo) = Nkr and the general 
solution then determined by the superposition principle. 

4.2. Evolution in Discrete Time: I terate Kernels 

Evolution in discrete time, i.e., when indexed by the number of con- 
secutive " t r ia ls"  rather than a continuous timelike parameter with random 
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incidence of transitions, may be expressed in a manner closely parallel to the 
above. In the present context we ask for the probability P(x, n) that a test 
molecule will be in state dx about x at the nth of a series of distributive 
"collisions" with the heat bath, given its initial condition P(x, 0). This is 
given by 

fo P(x, n) = K(")(x, y)P(y, O) dy (29) 

where K(")(y, x) is the nth iterate kernel defined recursively through 

fo K(~+l)(y, x) = K(y, w)K("-I)(w, x) dw 

K'l~(y, x) - X(y,  x) (30) 

Determination of the n-step transition probability K(")(y, x) is likewise possible 
in terms of the eigenvalue solutions. This time we use a bilinear expansion 
formula, i.e., the spectral representation of K (") in the form 

/(~")(y, x) = So(y) + So(y) ~ (a~"/N~)r (31) 
h : = l  

with the eigenfunctions ~k(x) and ~bk(k) determined as before. We see that, 
whereas for continuous time the equilibrium distribution is approached by 
decay of the exponential transients exp(-A~t), for discrete time this results 
from the vanishing of powers ;~k" with 0 < ~k < 1. [Note that in separating 
the equilibrium terms above we have used the choice ~bo(x) = 1.] 

4.3. Moment  Evolution and Autocorrelat ion: Continuous Time 

The evolution of the moments of an initial distribution P(x, O) may often 
be determined without knowledge of the full distribution function P(x, t) 
and the eigenvalue solutions. Special interest attaches to the first moment of 
the initial delta distribution P(x, O) = 3(x - xo). Let this be designated 
(x(t);  Xo), where 

(x(t);  Xo) = xP(xlxo, t) dx (32) 

and P(x I Xo, t) is the evolution of the given delta function. 
Forming moments on both sides of Eq. (26), it can be seen that 

(x(t);  Xo) = (x(oo)) + ~ N;lXo~bk(xo) exp[-(1 - h~)t] 
k = l  

(33) 
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with Xok the "matrix-element"-like quantity 

fo ~ Xo~ = X~o(X)g~(x) dx  (34) 

The autocorrelation function for equilibrium fluctuations in the variable x is 
closely related. In the familiar manner this can be written 

fo s a t )  = r  - <x(~o))][Xo - (x(oo)>]} dXo (35) 

[noting, of course that (x(0); Xo) = Xo]. Using the eigenfunction expansion 
(33) and the orthogonality property, it follows that 

Sx(t) = ~ N;1Xg~ exp[ - (1  - hk)t] (36) 
k = l  

(cf. Lax (15) and Hoarea6)). 
There are nevertheless, as we have indicated, conditions under which 

the full eigenvalue problem may be bypassed to yield the moment evolution 
(x( t ) )  and autocorrelation function S,:(t) directly. As Andersen, et al. (17~ 
proved: 

A sufficient condition for pure exponential relaxation of the moment 
(x( t ) )  in a continuous-time process with transition kernel K(x, y) is that the 
latter possess a first moment kin(x) of the form k(l~(x) = a + bx with a and b 
constants. (The AOSW condition.) 

It then follows that the mean of x at equilibrium is given by (x(oo)) = 
a/(1 - b) and that the relaxation solution is explicitly 

(x ( t ) )  - (x(oo)) = e-(1- b~t (37) 
<x(0)> - <x(oo)) 

It is a simple step from this to the equilibrium autocorrelation function in 
the form 

S~(t) = Var(x)eq e- c1- b~t (38) 

with Var(x)oq the equilibrium variance 

f; Var(x)eq = ~o(X)[X - (x(oo))] 2 dx (39) 

4.4. M o m e n t  Evolut ion and Autocorre la t ion:  Discrete Time 

The moment and autocorrelation equations for discrete-time processes 
follow in similar manner from the bilinear expansion (31). Thus for the first 
moment of a delta distribution after n trials 
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<x(n); Xo) = <x(~)) + 2, (h2/N~)X0~ (40) 
k = l  

and for the autocorrelation of equilibrium fluctuations 

Sx(n) = ~ (a~/Nk)X~o (41) 
k=J .  

If  the ASOW condition applies, there is a corresponding simplification. 
Forming moments of any initial distribution P(0) for this type of kernel, we 
see from Eq. (29) that 

(x(n  + 1)) = a + b(x (n) )  (42) 

or, in terms of the difference operator A, 

A(x(n)) = a + (b - 1)(x(n)) (43) 

This is a standard first-order difference equation, which has the solution (la) 

(x(n)) = b'~(x(O)) + (1 - b~)(x(oo)) (44) 

for given initial moment (x(0)). From this it follows that the n-step auto- 
correlation (autocovariance) function is just 

Sx(n) = b ~ Var(x)ea (45) 

5. M O M E N T S  A N D  A U T O C O R R E L A T I O N  FOR THE (Plq,~ 
PROCESS 

With the groundwork of the previous section and our result (15) for the 
first moment of the (Plq, oo) distributive kernel it is possible to write down the 
autocorrelation behavior of this model immediately. Thus, using Eqs. (38) 
and (45) with the property (15) we have for the equilibrium fluctuations 

Sx(t)  = p exp{- [q/(p + q)]t} (46) 

(continuous time) and 

Sx(n) = p (47) 

(discrete time). 
The moment relaxation equations (37) and (44) are expressible with 

similar transient terms. In these results we see, perhaps more clearly than in 
the later eigenvalue properties, the essential dependence of the decay of 
fluctuations upon the parameters p and q. As intuitively forseeable, and in- 
dicated by our analysis in Section 3, the condition p >> q (test molecule much 
larger than heat-bath molecule) gives a very extended decay of fluctuations 
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By contrast the condition q >> p leads to a decay with relaxation time 
approaching the mean collision time. Note that for p = q the relaxation 
time is twice this. 

In addition to their general interest, these results provide a useful 
counterexample to the common misconception that the only processes with 
strictly exponential autocorrelation are "Gauss ian"  Markov processes of 
Ornstein-Uhlenbeck type. 

6. T H E  E IGENVALUE P R O B L E M  FOR THE PROCESS 
(Plq, oo) 

The beauty of the kernel (9) is at its clearest in the eigenvalue properties. 
We shall show that the integral equation (13) is exactly soluble and thus leads 
to an explicit result for the relaxation of the (Plq, oo) model, whether in dis- 
crete or continuous time. 

A number of solution methods are possible--we choose what seems the 
most concise and revealing of these. The key to this is the observation that 
the kernel K ( y ,  x)  defined in (9) can be rewritten in such a way that its con- 
volution structure is seen as the "kernel product"  of two factors, each 
factor being itself a " t r iangular"  kernel and vanishing either above or below 
the diagonal. Thus, in a notation suggestive of the outcome, we may write 

f0 ~~ + [ q ]  

K,,q(y, x)  = (p)q '-',+~-~- t,n ~(y, u)Sp _ a(u, x )  du (48) 

where 

and 

S+tql:,, x )  = F ( q ) - l x i ' - l u - ( " + q - D ( u  -- x)<~-IH(u - x )  (49) p- lk~, 

S -  tq~ :,, u) = P(q)-  le~- ~(u - p +q- i t ) ' ,  y)~ - 1H(u y)  (50) 

and (p)q = p(p + 1)(p + 2)... (p + q - 1) = I'(p + q ) /P (p )  (the Poch- 
hammer function), Now, on writing ca+tq~ cp-tq~ and ~ ~ for the integral ~"p--I , ~'p+q-1, 

operators represented by the above kernels, we see immediately that the 
eigenvalue problem Jgp.q4J = ~b can be expressed in the form 

c o  - tqa 6 0  + rql~, / .  
o~,§ J~ -z  :~- = [a/(p)q]~b (51) 

The 6 a operators being integral operators, we may reasonably seek 
differential operators ~-p+q-lq--tq~ and o,p_zor+tq~ inverse to them in the sense that 

+ ~ - 1  - = ~ - , - 1  ~+Eg~_l  = : (52 )  

with or the identity. These would then correspond to the factorized differential  
equation 

( ~ + ~ L  ~ o r  + t ~ , l .  = ~ . , _ ~ , ~  [ ( p ) ~ l ~ ] ~  (53 )  
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whose solution would be equivalent to that for (51) except for the loss of 
boundary conditions implicit in the former. The Y- operators are not hard to 
find. Noting the similarity between the implementation of  the 5~ operations 
and the Riemann-Liouville type integral, (29~ 

D - q f ( x ) -  1 j ( u -  x) q-zf(u) du (54) 
P(q) x 

we can recognize the differential inverses to be 

.y-p-t,l x-(~.-l~Dq.x~.+q-i (55) +q--i ~ 

and 

j - + m  ( -  1)~e':Dq.e -x (56) p - 1  ~--- 

Consider first the special case q = I. The differential operators are ~ +  1 = 
- e X D . e  -x  and ~ -  -- x-(~'-~>D.x v and the differential equation (53), which 
is now of second order, is easily interpreted as 

(o~v-~+a)~b = [x2D + (p - x ) D  -p l~b  = - (p/h)~b (57) 

o r  

[xD 2 + (p - x )D  - p ( 1  -- a-~)]~ = 0 (58) 

This is recognizable as a confluent hypergeometric equation one of whose 
solutions can be written 

09  V w; (a),x ~b(x) = z~= ~ (?)vu! = 1Fl(a; ?; x) (59) 

where here we can identify a = - p ( ; ~ - i -  1). The second, logarithmic 
solution can be disregarded, since the integral operation (13) requires finite- 
ness at the origin. Furthermore, if the same integral operation is to converge at 
infinity we require that ~b(x) behave as a polynomial. Restoring these bound- 
ary conditions to the differential solution (59), we see that the requirement 
for the 1F~ series to terminate is that 

p ( 1 -  h -~) = - k ;  k = 0 , 1  ..... oo 

i.e., that 

2~ = p/ (k  + p) (60) 

The eigenfunctions now become the Laguerre polynomials, conventionally 
defined 

L~,,_l>(x) = ~(P)k 1 F l ( - k ;  p;  x) 

= Z g + p -  1 x'  
v=o k - v ~ ( 6 1 )  
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and having the orthogonality 

fo ~ x~- le-XL~P- l~(x)L}P-1)(x) dx = (i + 1)p_~ 3~s (62) 

This solves the eigenvalue problem (16) for q = 1. 
The solution for the case q a general positive integer follows quite easily 

if we notice that the ~r + ~q~ - [qj operators ~p_ ~ and ~ + q_ 1 are in effect simple rearrange- 
ments of  those appearing in the standard differential relationships for the 
confluent hypergeometric functions. These are usually cited in the forms 

D~[xC-~lFl(a; c; x)] = ( -1 )" (1  - c)~xC-~-lzFl(a; c - n; x) (63) 

and 

D"[e-~iF1(a; c; x ) ]  = ( -  1) '~ (c ~_a),~ e_~iF1(a; c + n; x) (64) 

[Ref. 25, Vol. 1, Eqs. (6.5.12) and (6.5.13)]. Noting that (-1)~(1 - c), = 
(c - n)~ and replacing c by c + n in the first equation, we can combine these 
to give the following equation of order 2q: 

[x-(C- 1)D"xC+"- 1][( - 1)qeX Dqe -x] 1Fl(a; c; x) 

= (c - a)~ 1Fl(a; c; x) 

The correspondence with the factorization (53) is obvious on making the 
identifications c = p and n = q, and we can see that the latter is satisfied in 
the form 

(~q.tgL~ 'd'-p+__~)lF~(a; p; x) = (p - a)q iF~(a; p; x) 

with a at this stage any root of  the polynomial equation A(p - a)q = (p)~. 
However, we again impose the boundary condition that ~b(x) be a polynomial 
and restrict a to negative integer values. With this the problem is solved and 
we can write, to within a normalization, 

(65) 

A~ = (p)J(k + p)q (66) 

Thus, remarkably at first sight, the eigenfunctions are unchanged, being 
independent ofq. We shall adopt the choice ~bk(x) = L~P-1)(x). 
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Summarizing the above in modern terminology, we can recognize that 
Eqs. (55) and (56) specify n-step differential ladder operators 2 for the confluent 
hypergeometrie function. In acting on the second rather than the first param- 
eter, however, they differ from the better known operators first studied by 
Schr6dinger, (2~ Infeld and Hull, (26) and more recently Hadinger et al. (32) The 
operators ~+~qa and w-tq~ are correspondingly n-step integral ladder ~'p--I ~p+q--i 

operators and act strictly on the polynomials and not the unrestricted C H G  
function. When written out the raising operation 5e~+t~ ~ applied to the Laguerre 
polynomial L~ p- 1)(x) is known as the Kogbetliantz formula. (21) The lowering 
operation is not usually cited. We note that, like the Riemann-Liouville 
integral (54), the 5ep+t~ ~ operation is valid for nonintegral q, this giving rise 
to a reinterpretation of  the whole solution above in terms of the fractional 
calculus. We return to this interesting aspect in Section 10. 

With the left eigenfunctions of  the operator (9) now known, we can form 
either the master equation solution (26) or the spectral representation (31) as 
required. Perhaps the most remarkable feature of  these results is the fact that 
the parameter  q is absent from the left eigenfunctions and, in the transient 
part  of  the solutions, contributes only through the eigenvalue ~ .  Otherwise 
the solutions reflect the tendency seen earlier in the autocorrelation functions 
--i .e. ,  to a long persistence of transients when p >> q and a compression of 
the whole spectrum toward the '~0 = 1 limit at the opposite extreme q >> p. 

Using the orthogonality relation (62) we can distinguish some special 
cases of  the expansion coefficients ak in the initial-value solution (26). For the 
delta-function initial condition P(x,  O) = 8(x - xo) we find that 

I '(p) L~ p - 1)(Xo) (67) 
ak = (k + 1)p-1 

For  the initial condition in which the distribution P(x,  0) represents a Boltz- 
mann distribution at some temperature To not equal to the heat-bath tem- 
perature T we find that 

ak = (! - To~T) k (68) 

This follows on use of  the Laplace transform relation for the Laguerre poly- 
nomials [Ref. 25, Vol. 2, Eq. (10.12.32)]. 

The autoeorrelation function (38) may be recovered from the eigenvalue 
solution on introducing the fact that x = pL(oP-1)(x) -L(l~'-l)(x) into the 
evaluation of  X01 of  Eq. (34) and using the orthogonality property. It  follows 
immediately that X01--p l /2  8~1 and the autocorrelation series is duly 
truncated at a single term. 

2 It is implicit in all the above, though we have bypassed the need to use the fact, that 
the q-step operators for q an integer are equivalent to the iterations -Eqa ~7":o + q _ 1 

yp-,y--+z ... J~+q_~, Se~tq~_~ _= 5op-5o7~ ~ ... SPp-+~_~ and similarly for the .y-+tqJ 
and Se+tq~ cases. The .y-+tq~ and ,Y" -~ql operations are well known. (See Ref. 25, Vol. 1, 
Section 6.4.) 
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7. DUAL ITY  A N D  THE (p, qloo) PROCESS 

Without considering the detailed form of the distributive kernel (9), 
it is clear  on combinatorial grounds that a second, closely related process 
must exist with a simple change in the role of the degree-of-freedom subsets 
p and q. 

In physical language the new process can be described thus: A "mole-  
cule" o fp  + q internal degrees of freedom is put into distributive interaction 
with a heat bath in such a way that now only the q subset interact at each 
event, these becoming fully equilibrated to the Gamma distribution of an 
infinite heat bath before being restored to the system o fp  + q. This process, 
which we denote (p, qloo), is illustrated in the diagram of Fig. 3. It might be 
thought to model a collisional transfer process in which a very large heat-bath 
molecule exchanges energy during a collision with a subset of internal degrees 
of freedom, the content of these then redistributing intramolecularly on a 
longer time scale after the collision is terminated. (However, see Section 9 
for an extension of this idea.) 

The kernel for this process is again a convolution of type (Beta) .  
(Gamma) and an accounting of conditional probabilities shows this to be 
(/3 = 1 )  

I'(p + q )e  -~ (~i~(~,~) 
K'v,q(y, x )  = ! u ' -  l ( x  - u) q- ~(y - u) q- ~e u du (69) 

r ( p )  V(q)~x~ +~-1 ~o 

On closer examination it becomes clear that the relation of this kernel 
to that for the previous process (9) is simply a reversal in the order of factors 
when it is expressed in terms of the ~9 ~ operators (51). Thus, denoting the two 
integral operators by ~ and d ' ,  respectively, we may confirm that 

q (,,~ w-tq~ Sf+tq~ (p[q,  oo) (70) 
, ~ \ y / q v p + q - - 1  p - -1  

~ ' o  t .a ~e+tq~e-tq~ (p, qloo) (71) 

Using this and the properties of the 5" ladder operators found in the previous 
section [cf. (49) and (50)], we can write the eigenvalue solution for the 
kernel ~ '  immediately. This time we find 

p,q  oo p q,oo 
x 

Fig. 3. The dual distributive processes (p, qloo) and (plq, Qo). These diagrams are 
simplified from the forms in Fig. 2 in an obvious way. 
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A~' = (p)q/(k + p)q (72) 

r = Wp+q,~(x) = F(p + q)-ixP+q-~e -x  (73) 

~bk(x) = L~ ~ +q- 1)(x) (74) 

The eigenvalues are unchanged; the eigenfunctions are modified in becoming 
orthogonal with respect to the new equilibrium distribution Wp+q, ~(x). The 
autocorrelation functions are likewise unchanged except that the prefactors 
become the new equilibrium variance: Var(x)eq = p + q. 

8. S E C O N D - O R D E R  D I S T R I B U T I V E  PROCESSES:  
THE (p, qlr, oo) M O D E L  

The previous examples do not exhaust the possibilities for designing 
simple distributive models relevant to energy-transfer processes. We shall 
single out one further type of model from the various extensions possible 
to the "Laguerre- type"  processes of  Sections 6 and 7. 

Consider the sequence of distributive trials diagrammed in Fig. 4. In 
molecular language: A test molecule o f p  + q degrees of  freedom is inserted 
into a heat bath of  molecules with r degrees of  freedom. On each collision 
there is a distributive interaction in the manner described previously, but this 
time only q of  the p + q degrees of  freedom in the test molecule interact with 
the r available from the heat bath. 

Following the two previous examples, we can recognize the transition 
kernel for the process to be composed by a double convolution of occupancy 
distributions of  the form (Beta) �9 (Gamma)  �9 (Beta). When written out it 
proves to be 

Kp,q,,r(y, x) = f f ?  Wp,q(U,  x ) W r , ~ ( v  - x ) W q , r ( y  - u ,  p - u )  

x H(x  - u)g(v - x )H(y  - u)H(v - u)du dv 

Fig. 4. The second-order distributive process (p, ql r, co). 
Note how the subprocess on the right of the diagram is 
itself a first-order process of type (qlr, oo) as shown in 
Fig. 3. The presence of this "embedded" process is also 
conspicuous in the form of the transition kernel, Eq. (75). 

p+q 

I y j liiiiliiiiiiiiiii!iiii!iiiii!iii!ii!i!iiiiiiiiiiiiiiiiiii  
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= F(p + q)F(q + r) eXx_(~+q_~> 
F(p) F(q)2F(r) 2 

( m l n ( x , y )  

x u ' -  ~(x - u)~-  ~(y - u)~-~ 
�9 a 0 

ri o (v - x y - l ( v  - y )~- le-~  
x (v - u) q+r-1 dv du (75) 

max(x.y) 

We shall refer to this as a second-order distributive kernel reflecting the two 
convolutions involved. 

Although of somewhat forbidding appearance, this kernel [and its near 
relative Eq. (82) of Section 9] may be of considerable importance in modeling 
intermolecular energy-transfer processes. Examination of the convolution 
structure in Kp,q,r(y, x)  will show that the second-order mechanism supplies 
a realistic tendency neglected in the first-order models--namely the element 
of Markovicity due not simply to the aftereffect of high (or low) energy in 
the collision complex, but also the inhibition of "flow" of energy between the 
partners in the limited time available. 

The solution of the eigenvalue problem for this case is somewhat more 
difficult than for the "first-order" kernels considered up to now because no 
comparable factorization of the kernel into "ladder operators" seems 
possible. However, an exact solution can be found with the help of the 
addition formula (A2) for the Laguerre polynomials. We shall confine our- 
selves to a brief statement of the result and an outline of its derivation in the 
Appendix. As a convolution of normalized distributions Kp,q,T(y, x) is 
automatically stochastic and its detailed-balance symmetry implies the 
equilibrium distribution r oc Wp+q(x). The (unnormalized) right eigen- 
functions prove to be 

r = x ~ +q- l e -  XL~ +~- l~(x) (76) 

with corresponding eigenvalues 

k~ = a F 2 ( - k , q , r ; p  + q ,q  + r; 1) (77) 

The autocorrelation function for equilibrium fluctuations is obtainable either 
via the above or through direct determination of the kernel moment kin(x)  
[cf. Eq. (14)]. This quantity has the first-order polynomial form 

kin(x)  = (p  + q)(q + r) + (q + r-'---~ x + (78) 

indicating at once that the moment relaxation is exponential. The auto- 
correlation functions follow as 

S , ( t )  = (p + q) exp - [qr/(p + q)(q + r)] (continuous time) (79) 
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[ s] p r  q (discrete time) (80) Sx(n)  = (p  + q)  (p  + q ) (q  + r )  + (q  +---'-7 

Notice how these forms reduce to those for the first-order models either on 
letting p = 0 or on taking the limit r -+ oo. We could write this symbolically 
as (0, q[r, oo) - (qlr,  oo) and Limr..~(p, qlr, oo) = (p,  q]oo). This type of 
correspondence, the physical origin of which is obvious on retracing the 
derivation of the kernels, is present in the eigenvalue solutions themselves 
and in all derived properties. 

9. FINITE S Y S T E M S :  T H E  (Plq, r) A N D  (p, qlr, s) P R O C E S S E S  

Suppose that in the previous models the heat bath is replaced by a 
further set of subsystems f in i te  rather than infinite in number. The system 
is now characterized by a total energy E rather than a temperature parameter 
fl and its replicas constitute a type of microeanonical  ensemble  rather than the 
canonical  ensembles  previously considered. However, this change scarcely 
alters the thought-experiments defining our processes and we can easily 
retrace the derivations of the new, more general transition kernels. 

Thus, forming the convolution (Beta) �9 (Beta) instead of the (Beta) �9 
(Gamma) of Section 3.1, we immediately arrive at the kernel for the process 
(p[q, r).  This is 

K,,q,r(y,  x )  = B(p ,  q ) - l B ( q ,  r ) - i y ~ - ~ ( E  - x) -(q+r-l> 

J2 x u-(~,+q-l~(E _ u ) r - l ( u  _ x ) q - l ( u  _ y )q - z  du (81) 
a x ( x , y )  

Likewise the second-order process analogous to that in Section 8 and having 
the structure (p,  q[r, s )  gives a transition kernel through the double con- 
volution (Beta) �9 (Beta) �9 (Beta): 

Kv,~.~,~(y, x )  = B(p ,  q ) -  lB(q ,  r ) -  lB(r,  s ) - Z x - ( ~ + q -  l~(E - x )  -(r +~- l~ 

~ m l n ( x , y )  

x u s -  ~ ( x  - u ) ~ -  ~ ( y  - u ) ~ -  
,JO 

f E ( E  - v )*- l (v  - x )~ - l ( v  - y ) r -1  
x (v - u) q +~- ~ dv du (82) 

m a x ( x , y )  

These kernels clearly reduce to the forms (9) and (75), respectively, on taking 
the thermodynamic limit E - +  0% r--+ 0% r = fiE. As before, there are 
numerous physical and nonphysical realizations of the above probabilities. 
A possible use of the kernel (82) would be to model the redistribution of 
internal energy within a collision complex of given total energy E when only 
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q and r degrees of freedom from the respective partners are able to com- 
municate energy. 

We shall not discuss the solution of the corresponding eigenvalue prob- 
lems in detail, for they are broadly similar to the (p]q, 0o) and (p, q[r, oo) 
cases already treated. In the former, an operator structure leads by entirely 
analogous steps to Jacobi polynomial eigenfunctions, while the same recur in 
the second-order case, though the proof is somewhat more difficult than that 
in the Appendix due to the nonexistence of a Jacobi addition formula analo- 
gous to (85). (See Ref. 7 for further details of this case.) The results are given 
in tabular form in Table III, where it will be seen that all the relevant 
properties, e.g., the moments and autocorrelation functions, tend like the 
original kernels to the previous results when the thermodynamic limit is taken. 
A special case of the kernel (81), that for q = 1, was studied some years ago 
as a problem in unimolecular reaction theory. (2s~ 

The invention of the kernel (82), like its less general form (75), promises 
important applications to the analysis of experimental measurements. Of 
particular interest is the case p -- s, q -- r, representing energy transfer 
between limited degree of freedom of identical molecules. Even the peculiar 
case p + q = 1 as a model for single-oscillator transfer would seem worth 
further investigation. We stress once again that no other transition kernels 
seem to be known in the literature that represent a Markovian transfer of 
energy as opposed to a pure randomization within the collision complex of 
multiple degrees of freedom. 

10. M A T H E M A T I C A L  I M P L I C A T I O N S  

Some forty years ago considerable interest developed around the problem 
of finding bilinear expansions of the classical orthogonal polynomials, a 
number of elegant results being derived by Erdelyi, Watson, Koschmieder, 
and others. (~'~'2a'24~ None of this work seems to have originated in a physical 
problem or to have been noticed in the physics or applied probability litera- 
ture. One of Erdelyi's expansions (~ takes the form 

o ~l~(x'~ u ~,- l(x _ u)~ l(y  _ u)q le, ~ du 

[ k!  I'(k + p) ~]L~,+q_~,(x)L~,+~_l,(y ) 
= r(q)2(xY)'+"-i ~ ~,UCk u Vq-) ! (83) 

h : = 0  

(Re p > 0, Re q > 0). It is clear that this is none other than the spectral 
representation of the symmetric part of the transition kernel for the model 
(p, qloo)--the "dual  Laguerre" process of Section 7. A similar correspond- 
ence exists between all the eigenvalue solutions obtained in other sections and 
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a formula of the Erdelyi type, and these are readily written down on sub- 
stitution of the quantities h~ and Ng from Tables II and III into the general 
expression (31). All these results embody the duality properties inherent in 
the statistical models and allow the transition from finite to infinite degrees 
of freedom corresponding to the well-known limiting relationship between 
the Jacobi and Laguerre polynomials. (25~ The latter thus has its counterpart 
in the "thermodynamic limit" of Section 1.3. None of the resulting formulas, 
except that quoted above, appear to have been published and some of them, 
particularly the double-integral results of Sections 8 and 9, were almost 
certainly unsuspected before the present stochastic interpretation. We have 
discussed the mathematical aspects of distributive processes in more detail 
elsewhere (6,8) and Rahman has given an exhaustive account of some Jacobi- 
type bilinear formulas more general than those considered here. (7~ A recent 
paper by Ismail (27~ includes a proof of the Laguerre expansions essentially 
equivalent to that in Section 6, with additional insights. 

It may be noticed, however, that, whereas we have throughout regarded 
the degree-of-freedom parameters p, q, r, etc. in the models as positive 
integers, the Erdelyi formulas hold for fractional and even complex values 
of these under certain restrictions. While not much physical sense can be 
made of negative or complex degrees of freedom, the idea of fractional values 
is an interesting one and quite familiar in the interpretation of experimental 
measurements. (2s~ Thus, for example, in the (p, q[oo) and (p, q[r) processes 
we can allow a fractional q value to parametrize the "effective degrees of 

Table II. Continuous First-Order Distributive Processes 

Laguerre type Jacobi type 

Diagram 
Structure 
State space 
Equilibrium 

distribution ~o(X) 
Transition kernel 

K(y,  x) 
Eigenvalues Ak 
Eigenfunctions ff~(x) 

Equilibrium mean 
Equilibrium variance 
Autocorrelation 

coefficient 1 -- ~ 
Normalization 

coefficients Ns 1 

(Plq, oo) (plq, r) 
(Beta) * (Gamma) (Beta) �9 (Beta) 
(0, oo) (0, E) 
F(p)-lflPxP-le -Be B(p,q)-~(x~-~(E - x)q-1/E ~'+~-1) 

Eq. (9) Eq. (81) 

(p)q/(k + p)q 

= 1 F l ( - k , p ;  [3x) 
p/[3 

p/fl2 
q/(p + q) 

k!/(p)~ 

(p),(r)J(k + p)~(k + rL  
Jz(p. p + q + r -  1 ;x /E)  

= 2F~( -k . k  + p + q + r - 1.p;x/E) 
pE/(p + q + r) 
p(q + r)E2/(p + q + r)2(p + q + r + 1) 
q(p + q + r)/(p + q)(q + r) 

k[ (q + r)~(p + q + r -  I) 
( p ) ~ ( p + q + r -  1 ) k ( 2 k + p + q + r - -  1) 
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freedom contributing to energy transfer" provided only that p + q remains 
integral whenever the equilibrium distribution is meant to correspond to a 
well-defined Boltzmann case. 

The possibility of distributive processes with nonintegral degree-of- 
freedom parameters sheds further interesting light on the underlying mathe- 
matics. Thus the whole derivation of Section 6 can be recast in the language 
&fractional calculus with both the differential and integral ladder operators 
taking on a more general aspect in this sense3 TM The key integral operators 
5~+ Eql and c~-rq~ -1 ~p+q-1 are reinterpreted in terms of Riemann-Liouville-type 
integrals, the former being directly identifiable with the fractional operator 
D-q. The differential ladder operators a - - m  and ~ + tqJ are then interpreted ~'p +q--1 ~" p-1 

as formal inverses of  these and the result is a solution of the eigenvalue 
problem by fractional factorization, a somewhat novel concept, though readily 
understandable in terms of the ~ operators and the basic postulates of 
fractional calculus. ~1~'29~ We shall take up some of these questions else- 
where, (am being content here to indicate some signs of increasing interest in 
the fractional calculus and new aspects of the factorization method in 
theoretical physics. (19'29'a1~ 

11. DISCRETE DISTRIBUTIVE MODELS 

An obvious extension to the models described here is the reconstruction of 
them in terms of the discrete state-variable i ~ [0, 1 .... , N] or i ~ [0, 1,..., ~] ,  
as appropriate to the redistribution of " q u a n t a "  among molecules with 
multiple degrees of freedom. An early treatment of this idea was that of 
Hoare, <n~ which dealt with.the simplest case of "distributive" transfer of 
quanta between simple oscillators. 

The whole structure of results presented in this paper has been generalized 
to the discrete variable by Hoare and Rahman in work to be published 
elsewhere. (m Here we shall cite very briefly the main results of the Hoare-  
Rahman work in order to establish its close relationship with the present 
problem. 

Consider the opening paragraph of this paper in discrete language, i.e., 
the interaction of a test molecule containing i "qu an t a "  amongp (degenerate) 
degrees of freedom with the q-molecules of a heat bath. Let the quantum 
energy be specified in terms of  the heat-bath temperature T by 0 = (hv/k~T). 
The transition matrix K(j, i) giving the probability of a transition i - ~ j  is 
found to be 

K(j, i) = P(p + q)2 (J F(p)P(q) + 1)p_l(1 - e-~ ~~ 

(k - i + l)q_l(k - j + 1)q_le -~~ 
x (k + 1),+q-x (84) 

Ir max ( i , j )  
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Here we have used the Pochhammer symbol (i)~ = i(i + 1)(i + 2)..- 
(i + a - 1) to bring out the obvious structural resemblance to the integral 
kernel in Eq. (9). 

The infinite matrix eigenvalue problem K~ = ~ for the above can be 
solved and yields eigenvalues A~ = (p)J(k + p)q unchanged from those of the 
continuous model. The right eigenvectors prove to be r = r p, e- o), 
in which the equilibrium eigenvector r is the negative binomial distri- 
bution, r = F(p)-I(i  + 1)p_l(1 - e-~176 and the Mk(i,p, e -~ are the 
Meixner polynomials, 2Ft(-i, - k ; p ;  1 - e-0). Thus both spectra and auto- 
correlation properties are unchanged on discretizing the problem. As to be 
expected, the discrete results tend to those for the continuous problem on 
carrying out the limit hv/kBT-+ O. 

In a similar manner the processes symbolized by (p, ql~), (Plq, r), 
(p, qlr), (P, qlr, oo), and (p, qlr, s) can all be described and exactly solved in 
terms of discrete state spaces. We refer to Ref. 9 for full details. 

12. GENERAL A P P L I C A T I O N S  

The idea of a distributive process can evidently be restated in quite general 
terms, having no particular connection with either statistical mechanics or 
even occupancy problems. Thus we may define general first- and second-order 
distributive transition probabilities by kernels of the form (8) and (75), 
respectively, but with the convoluted functions W(y, u), etc. no longer the 
standard Beta or Gamma distributions. These kernels would inherit some of 
the simplicity of the present models, though not, of course, the exact spectral 
representations here derived. 

In this framework a number of applications in general applied probability 
can at least be envisaged. We may retain an aspect of the occupancy problem 
in using distributive schemes to model the random input/output variables 
occurring in, for example, the classical problems of storage theory. (33) Thus 
the fluctuations in inventories, dams, queues, and idealized economic systems 
might be expressible through transition probabilities having similar structure 
and some of the characteristics of the kernels for the statistical mechanical 
problem. The interest of these models would lie not so much in the asymptotic 
behavior, which is virtually imposed from the start, as in the occurrence of 
simplified autocorrelation and in the possibility of parametrizing results 
systematically over the whole range from diffusion-like behavior to the 
virtually non-Markovian random extreme. Other applications suggest 
themselves in electrical noise theory and, in the case of discrete systems, 
genetics. 
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APPENDIX.  SOLUTION OF THE EIGENVALUE PROBLEM 
FOR THE (p, qlr, m) KERNEL (75) 

We shall outline the solution of the eigenvalue problem (17) 

; q~k(y)K(y, x) dy = ag~bk(x) 

in which K(x, y) is the kernel introduced in Section 8 [Eq. (75)]. Knowing 
from the general considerations in Section 4 that one left eigenfunction 
~b0(x) = 1 occurs with ao = 1, and that K(y, x) satisfies the detailed-balance 
condition, we know that the eigenfunctions ~bk(x) will be orthogonal with 
weight ~b0(x) = x p + q- le-x on (0, oo). It is therefore reasonable to expand the 
~bk in the complete set of Laguerre polynomials {L{V+q-1)(x)} sharing this 
property. Thus, writing 

~(x) = Z c,L~'+q-t)(x) (A1) 
r  

and entering this into the eigenvalue condition, we obtain 

x~+q-le -~ ~ c~L{'+q-1)(x) 
i = O  

f; = tz c, vp_ 1( x _ v) ~_~ e-  ~(u - x) q- lI~(u, v) du dv  -gva--T 
g = O  

where I~(u, v) is the integral 

I~(u, v) = L~V+q-~)(y)(y _ v)q-Z(u _ y)q-1 dy 

and ~ replaces A through 

A = B(p, q)B(q, r ) r ( r ) t ,  

The integral can now be reduced by using the series expansion (61) for the 
polynomials and the appropriate form for the addition theorem [Ref. 25, 
Eq. (10.12.35)] 

L (ff)(x)L(f~-k(Y) 
k = O  

In this way we find that 

M' +q- le-  x 2 c~L~" +q- 1)(x) 
t = 0  

= L ~ + e + f f x  + Y) 

= t~r ( r )  ~ ~ .  c, v ' - ~ ( x  - v) ~-~ 

(A2) 

m = i  

x ~ (m + q);-1L{~_ml)(v)L~-l)(x - v)e -x dv 
BI=O 
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We can now use the orthogonality relation to obtain an infinite set of linear 
equations for the coefficients cg. At this point, however, it emerges that the 
representation (A1) is in fact diagonal because 

~o  ~,~ r ( m + q )  c,F(n + n! p + q) = P(r)Z/~ _ c~ z~= ~ ( ~  q)rm[ 

o m  

j vp- i - v (p - i) ~'i/(p- i)(~,- 1 x e Li- m (v,_~_ m ~v, dv 
o 

Thus the right-hand side is proportional to c, itself and cancellation gives the 
explicit eigenvalue condition we require. Converting from t~ back to ,~, this 
proves to be 

A~ = (p + q)~ (q + r)v 
V = 0  

Noting that (P)k-~ = ( -  1)V(P)k/(1 - p - k)v and that 

We can rewrite the above in the form 

(P)k ~=o (-k)'(q)'~ a ~ = ( p + q ) ~  = ( q + r ) v ( l ~ 2 _ k ) ~ v !  (A3) 

The summation is evidently a terminating aF2 series with unit argument; in 
fact, 

(P)k F [ - k '  q, q k; 1] 
)~k= ( p ~ - ~ a  2 [ q + r , l _ p _  (A4) 

A theorem exists which enables us to simplify this result. We use the relation- 
ship 

_ [ - k , a , b  ] ( d - b ) k  F [ - k , c - a , b  ] 
c , d  ; 1  = l - b - d -  k ; a (AS) 

[See Gasper <35) for an explicit statement, and Bailey (Ref. 36, Section 3.2) for 
details of the method of proof.] Applying this to (A4), we obtain the much 
heater result 

q, q + r; 1 (A6) 

These are thus the eigenvalues of the (p, qlr, co) process discussed in Section 8. 
The corresponding left eigenvalues of the kernel (75) are then precisely the 
original expansion set, viz. 

r = L7 + q- ~)(x) (A7) 

to within a normalizing factor. 
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